Trastuzumab-containing therapy is a standard of care for patients with HER2+ breast cancer. HER2 status is routinely assigned using in situ hybridization to assess HER2 gene amplification, but interpretation of in situ hybridization results may be challenging in tumors with chromosome 17 polysomy or intratumoral genetic heterogeneity. Apparent chromosome 17 polysomy, defined by increased chromosome enumeration probe 17 (CEP17) signal number, is a common genetic aberration in breast cancer and represents an alternative mechanism for increasing HER2 copy number. Some studies have linked elevated CEP17 count (‘polysomy’) with adverse clinicopathologic features and HER2 overexpression, although there are numerous discrepancies in the literature. There is evidence that elevated CEP17 (‘polysomy’) count might account for trastuzumab response in tumors with normal HER2:CEP17 ratios. Nonetheless, recent studies establish that apparent ‘polysomy’ (CEP17 increase) is usually related to focal pericentromeric gains rather than true polysomy. Assigning HER2 status may also be complex where multiple cell subclones with distinct HER2 amplification characteristics coexist within the same tumor. Such genetic heterogeneity affects up to 40% of breast cancers when assessed according to a College of American Pathologists guideline, although other definitions have been proposed. Recent data have associated heterogeneity with unfavorable clinicopathologic variables and poor prognosis. Genetically heterogeneous tumors harboring HER2-amplified subclones have the potential to benefit from trastuzumab, but this has yet to be evaluated in clinical studies.
ASCO says that the benefit of HER2-targeted therapy in this patient population requires further study.
Holzschuh MA, Czyz Z, Hauke S3, Inwald EC, Polzer B, Brockhoff G.HER2 FISH results in breast cancers with increased CEN17 signals using alternative chromosome 17 probes – reclassifying cases in the equivocal category..Histopathology. 2017 Oct;71(4):610-625
Hanna WM, Rüschoff J, Bilous M, Coudry RA, Dowsett M, Osamura RY, Penault-Llorca F, van de Vijver M, Viale G, HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod Pathol. 2014 Jan;27(1):4-18.
Donaldson AR, Shetty S, Wang Z, Rivera C2, Portier BP, Budd GT, Downs-Kelly E, Lanigan CP, Calhoun BC. Impact of an alternative chromosome 17 probe and the 2013 American Society of Clinical Oncology and College of American Pathologists guidelines on fluorescence in situ hybridization for the determination of HER2 gene amplification in breast cancer. Cancer. 2017 Jun 15;123(12):2230-2239.